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ON USING THE MORE-ACCURATE EQUATIONS OF THIN COATINGS IN THE THEORY 
OF AXISYMMETRIC CONTACT PROBLEMS FOR COMPOSITE FOUNDATIONS* 

V.I. AVIIKIN, V.M. A~~~nRO~ and E.V. KOVALSNKO 

More-accurate equations describing the axisymmetric deformations of 
elastic, thin-walled elements (coatings) are derived using the asymptotic 
analysis of the solution to the first fundamental problem of the theory 
of elasticity for a layer. The notabie difference distinguishing these 
relations from the classical, Kirchhoff-Love and Reissner-Timcshenko 
equations of flexure of plates, and their modifications /l/, is, that 
there are no concentrated forces at the edges of the stamp when the 
corresponding contact problems are solved. Moreover, the formulas obtained 
contain the equations of classical theory as a special case. The solutions 
obtained using various applied theories are compared with the corresponding 
solution obtained using the equations oI. c the theory of elasticity, using 
the example of the axisymmetric contact problem of impressing a plane 
circular stamp into a layer lying on a Fuss-Winkier foundation. The 
characteristic parameters of the problem rn question are computed by 
n,:lerical methods. 

1. AS WE k:ao< /2/, the SGlCtiCr! of the equations of the thecry of elasticity can be 
exgressed, in the case of axisymmezric problems, by a single biharmcnic functron % (7, 2) 

(1.1) 

Let us consider the first bo,adary valile probler; on the equilibrium Of an elastic layer 
of thickness 2h, when the application 0. f external loads deforms it symmetrically about the 
z-axis. we shall seek the sclutlon of (1.1) in the form of a Hankel integral /3/ 

= 
(1.4) 

S,ubstituting (i.4' intc :1.;' ar.5 carrying cut simple mathematical reduction,, we obtain 

0 (5. 3) = (r,ch ;; - F&2 sh tz + d,sli& + d& ch it) ;-" (1.5) 

where Cj and dj(j = 1.2) are functions of $ whose forz is determined from the boundary conditions 
of the problemin question & (T, h) = o_(r). T,, (r. r?) = 1, (r) (1.6) 

0, (r, - 1)) = o_ (r), T,, (r. - h) = T_ (7) 

0,. T,, --e 0. (r: _r 22) -+ 00 

*Prikl.Matem.MeWlan.,49,6,1010-1016,198-: 
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We assume that the functions o*(r) and r*(r) in (1.6) satisfy the following conditions: 
any finite interval (O,R)u* (r),T* (r) are functions of bounded variation and 
EL@, 0). Then we can write e*(r), 5&(r) is the form of Hankel integrals /3/ 

+uk (r), 97, 

Applying further the Hankel transform to (1.6) and taking into account (1.2)-_(1.5), (1.7), 
we obtain 

u,'=-~~l(r,+c*+B*)sh%+ 

(4 f dz +"&jCh ElJo"(rE)&% 

W? "=--~5([dl-2(1-2v)dn+c.Ea]shr;r+ 

[cl - 2(1 " v)cz -+ d&]ch &} Ja"(r&)[*dE 

f)(E) = D_-zrfr,(E)- z_ (E)] cj (5) + iT+ (E) i- T- tf)J sjA)l 

C, (t) = - 2v ch Eh - Eh sh E6, C,(E) = ch Eh 

S, (g) = (I--2r)sh Eh- Ehch th, S, (5) = sh Eh 

dj (f) = D+-' (IZ, (D i X_ (EM,* (E) -t 

[T, (E) - T_ (E)l cj* (3) 
S,* (E) = -2% sh Eh - {h ch Eh, S,* (E) = sh Eh 

C,* (E) = fl--2~) cl1 Fh - Ek sh E/t. C,* (E) = ch .$h 

D, (5) = sh 2Eh _c 2$ h 

0.8) 

Simplifying the expansions (1.81 written in terms of Hankel transforms asymptotically, 
up to terms of order 0 0.') (i = ha-' +O) and returning to the originals in accordance with the 
fact that u N rh, w -oh in contact problems (see e.g. the degenerate solutions for a thin 
layer /4/j, we will write 

46112 +- [r-lIui (i-j]'= - .Q=+-[[r(T+- 7_)]'- 

q [r.&(~_- T_)]'\y3(f - v)(o_- U_)-- vh?&(o, L a_)& 

(2 - 3~) h?& (a_ - OJ G v (3 [r (7, -t T_)]' - 

21i'[r& (T, 7 T_)]') 

ff.Qi 

.$ ,:~r.(T_-i_)]'=(l--)h~l"?(o. + 0 ) 
_s~ = d? &? - 7-l d dr - jr--’ (i = 0, 1) 

Note that Eqs.il.9) obtained cover radial, tensile and shear deformations, as well as 
deformations of the transverse flexure and compression of an elastic plate (coating). 

If in the course of deriving (1 .9) we use the fact that the parameter L = ha+ is small 
in order to average the displacements over the thickness, we arrive at the following simplified 
equations of plate deformation: 

4Gh&u, = - (i - v) (T, - T_) -; y h2& (T+ - T_) - 

vh (u_ + a_)’ 

(I.fO) 

+ Gh3&%‘* = (1 - v) (u_ - a_) 

* hJ&? (u, - u_) -- (1 -vP)h 
-“--7--i Ir 6, + L)]’ - ~[r4 (T+ i- 74 

Unlike (1.91, the above equations account only for the radial, tensile and transverse 
flexural deformations. Here and eariier A is a dimensionless parameter characterizing the 
relative layer thickness and a is the radius of the segment of active loading of the layer, 
i.e. of the segment where the surface loads (I* fr) and 
5% of their maximum values. 

4 (r) comprise, for example, at least 

The expressions (1.91, (1.10) obtained represent more-accurate differential equations of 
deformation of thin coatings. Neglecting on the right-hand side of the second expression of 
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(1.10) (or (1.9)) terms of order 1. and higher, we arrive at the Xirchhof-Love equation of 
plate flexure fl/. If on the other hand we neglect in (1.101 the term of order 0(X*) only, 
we obtain the Reissner-type equation of plate deformation /1/. Finally, neglecting on the 

left- and right-hand side of the second equation of (1.9) tams of order A' and higher, and 
on the right-hand side of the first equation terms of order IS, (i.e. if we neglect the 
flexural rigidity of the coating), we obtain 

4Gh A+* = - (1 - Y) (T, - T_) - vh (o, + o_)' (1.11) 
o-a_= + - hr-l lr (r, + ?_)I' 

Expressions (1.11) represent the equations of axisymmetric deformation of the Melan cover 
plate. We can also obtain from (1.9), (1.10) the Fuss-Winkler and Pasternak-Vlasov equations 
for the foundations. 

It should be stressed that when the contact problems are solved using Eqs.(l.9), equations 
of the theory of elasticityor Eqs.(l.lO), concentratedforces do not appear at the boundaries 
separating the segments. As we know /5-S/ this drawback characterizes the differential 
equations of flexure of elastic, thin-walled elements obtained on the basis of the Kirchhoff- 
Love or Reissner-Timoshenko hypotheses or their modifications. 

We shall present a method of proving the fact using Eqs.(l,9). Let us take a circular 
plate of radius a and thickness 2h with a load-free face. We introduce an axial load, a 
shearing force and a bending moment acting in the cross-section of the plate 

T (r) = j, o,& M(r)= s" a,i dz (1.12) 
I 

Q(r) = jA T,,d& 
-II 

Using the conditions of equilibrium of the plate we can show that T(a)= Q(U) =nf(u) = 0. 
Therefore Eqs.Cl.9) can be transformed to 

4GhzAIut LLI- - vh?&P_i 3(1 -sfQ" (2 - 3vjh24Q + (1.13) 

(1 - s)h {r-l (rT)’ -T [r-l (rT)“j’j f 
(1 - f} h (3r-1 (rS)’ - Zh? [r-l (rS)“j’) 

wi 1 

311 (1 - Y) r-l(r.Y)’ - (2 - 3v)h3[r1(rS)"]'T. 

vh3 [r-l (rT)“]’ = (1 -. yj hJ&*P 

P (r) = r-l i p (~7, - a_) dp, s (r) = r-1 j p (T* + T_) dr (1.1:) 

Sclving the systen of four Eqs. (1.13) we ca.. confirm that the functions (1.121, (1.14: 
.1 be continuous provided that the functions II* (r) and w*(r) are piecewise continuous. 

For example, elin;inating (J and S frcrr. the equations, we obtain 

A,&’ = -_.-k-. 7-1 
(I -Y]h (‘Tj’ + * cu., - u._)’ 

which shows that T,P will be contin.dous prc,;,ided that u*;u‘* are piecewise continuous 
functions. 

Therefore, when r = a, there will be nc concentrated forces. It is alsc important tc 
note that if the functicns u*(r) and u'+ (r) have first-crder discontinuities, then SG will 
the stresses ok (r) and r*(r) an'5 vice versa, andthediscontinuities will be connected with 
each other by the relations 

4G+ = +(1 - x.)(T+- T_) &zh (I -s)(T+ + T_) 

4Gu, -a= +- (1-s)(a,-u_)~h(1-s)(o, -+a_) 

Eqs.(l.lO)have the sa?e prcperties. 

2. We will iilustrata the use of the above equations by considering an axisymmetric 
problem of frictionless imbedding of a parabolic stamp, under a force P, into an elastic (G,v) 
layer of thickness 2h, lying on a Filss-Winkler foundation, with a coating coefficient 1. We 
shall describe the physico-mechanical properties o f the layer using the equations: 1) of the 
theory of elasticity; 2) (1.9); 3: (1.10); 4) of Reissner-type plates 

4Gh3AoZu+, = 3 (1 - ~1 (uT - o_) - (3-7~) h2Ao (u, - o_) (2.1) 



and 5) of Kirchhoff-Love plates 

4GhsAp*w, = 3 (I - v) (a+ - p) 

'Ihe problems under consideration CM be reduced, using the method of integral 
/4/, to finding the unknown contract pressures under the stamp, from the following 
equations of the first kind, written in dimensionless form as follows: 

i) K(u)= 
ch4u -l+nnu(sb4u+4u) 

f:hdu+luinu(ch4u-f--_81r*)iu 

2) K(u)= 3 0 + N i-4 11 + nt u*f ("is) P'hr+ n) u‘ 
3+ 4u=+ 4cis+ n)ua 

‘J) K(u)=3 
n 13 + mu* + (I/J mu*] 

+ mu*+- 4 [n + PM ml y1 

4) K(u)= ~~~~~~~~, , 5) K(u)=,&? 

I. = ha”‘, n = G [hl’(l - T)F, m = (3-2~) (1 - v)" 

which must be supplemented with the condition of statics 

P (1 - v) (Gal)-1 = R = 2n 5 u (r) r dr 
0 
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(2.2) 
transforms 
integral 

(2.3) 

(2.4) 

(2.5) 

Further, using the approach described in /4/, we transform the Eq.(2.3), f2.4, in the 
case of problem 1) to the equivalent integral equation of the first kind with a difference 
kernel 

dr = 6 -- 21’1: 

3 

We obtain the solution of i2.6? in accordance with the Rrein formula 191 

f 
g(T,S)k~‘~‘ldT=nh 

i i 
(O,<s< 1) 

-5 

E 

.I1 (E) = c g (f. 5) df 
i 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

To find the unknown function qfi.s) from the integral Eq.(2.10), we approximate L(u) 
in the expression for its kernel :2.6:, accortiing to the first formula of (2.41, by the 
expression 

L @) = [(II? - $2) (U? - .-I’m] ? 
u:._Bl (c-0, .4 = 1 + n) (2.11) 

The constant B is obtained in such a manner that the percentage divergence of the approxi- 
mation (2.11) from the function L(U)= UK(U) !2.4) is the smallest for all O~U<oO. 

We shall seek the principal (zero) term of the asymptotic form of g(1,s) for a<4 in the 
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(2.12) 

where oft) and v(t) satisfy the Eqs.(1.25), (1.26) of /lo/, with the corresponding functions 
within the inner integrals replaced by the expression (2.11). Substituting the solutions o(t) 
and v(t) obtained in this manner into (2.12) and passing to the limit as E+ 0, we write 

~(t,s)=Pw\I)(+)v(~) (2.13) 

Here i,.(t) are modified Bessel functions. The corrective multiplier ~(2.) is obtained 
form the first relation of (2.10) at t = 0 and s=l after substituting (2.13) into it. We 
note that expression (2.11) approximates the corresponding function L(u) at n<4 with an 
error not exceeding 20%. The error of the solution obtained on this basis does not exceed 
the error of the approximation and is reduced by introducing the corrective multiplier p(A) 
/‘U. 

The unknown radius of the region of contact between the stamp andthe layer, is found from 
the condition o(l)=0 which can be written, according to (2.71-_(2.9), in the form 

W, (1) - yM,’ (1) = 0 (2.14) 

-&(-~+-&-A&~;t 

t 
m[f- -z&-f -g$ [l-e+- yq] i_ 

ey(-F;[&(-++$----&)+-I- 

/ 1 
AB! !---T A3 + J- - -&j+$-} 

Finally, substituting (2.E:, (2.01, (2.13; into the condition of equilibrinn U.5>, we 

obtain 
R =.4 i&V, (1) - y-If, (1)) 

Let us now ccnsider problems 2) and 3:. Since in these cases the kernel ii(u) (2.4) of 

the integral Eq. (2.3; represents a rational function, the equation can be sclvedin clcsec! form. 
Indeed, let us write the kernel (2.3: in the forrr /4/ 

c = (4.4 - 5 4) (5.4 - I)-'. A = 1 y n (problem 2) 1 
c = mA (ZOA + m)-I, A = n (problem 3)) 

Here *;n = - i6,. - *ii = --iGk.& and 5~ denote, respectively, the poles and zeros of the 
functions A+(u) 12.4! 21, 31 I lying in the uper half-plane. The filnction b* (c,z) in (2.16) 

corresponds to the singular part of the kernel and is equal to 

6*(;, z)= 3 UJ0(U6)Jo(UZ)dU 
0 

It has the basic property of the delta f'UnCtiO= 

We shall seek the solution of (2.3) in the form 

0 (r) = h lim [6u (a, r) + 29~ (e, r)l$erl (e + 0) (2.17) 
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where a(&,?) is a solution of (2.3) with a perturbed right-hand side, Ia WV which GUI be 

written in the fOTJD /4/ 

a@,?)- - X0$0 (er) + $ x,r, (+) (2.18) 

Substituting into the integral Eq.(2.3) with right-hand side J, (&r)the functions k(S, 2) 
and a(e, r) (2.16)) (2.18) and equating in the resulting relation the coefficients of JO(er) 
and i,(z,r/l) on the left and right sides, we obtain the following system of linear algebraic 
equations for X1: 

aljX, + asjXI = blX, (j = i, 2), X0 = k-:-'Aeg (2.19) 

f 
Ukj=- 

2k’ - yj* b&K0 (gj) I1 (pk) + ypl (gj) lfi (Pk)l 

1 
bx= - yL,+EIh, hkh(gk) JO(e) - MO (gk) J1 @)I 

Solving system (2.19) and using the formulas (2.171, (2.181, we can write 

LAa (r) = 6 - yr’ + + <[V Kl (g1) - (2.20) 

We find the unknown radius of the area of contact between the stamp and plate from the 
condition u)+(*) (I)= 0, which is equivalent to a(i) = 0, and find the force acting on the stamp 
from (2.51, by substituting into it the values of the stresses (2.20). 

We shall use Reissner-type equations for the plates (2.1) to describethephysico-mechanical 
properties of a thin layer. Then formulas (2.31, (2.41; 4) give 

‘k = + 
1,s - y 1 

(,s,s - sk:~ yk lk,j=i,2; k#i) 

(2.21) 

(2.22) 

Using the relations (2.211, (2.22) we find, as before, from the integral Eq.(2.31 and the 
condition of statics (2.5). 

To find, in this case, the unknown region of contact, we must use the relation 1~.*~(1)= 0 
which is equivalent to the fact that there are no concentrated forces when r = 1 (Q (i) = 0 (see 
(1.12) 1. From (2.31, (2.23) we obtain 

* 

c 
j-1 

1-‘)j$T( ~K~(g,)-~[KO(~j)+~K~(g~)]j=o 
? 2 

Finally we consider the solution of the problem in question for the case when the mechanical 
properties of the layer are modelled by the Kirchhoff-Love equations of plate flexure (2.2). 
As was shown in /6/, the contact stresses will, in this case, have the following structure: 

ofr)=o,(r)+RJs(r-1) (2.24) 

i.e. they are composed of the distributed load and concentrated forces acting along the edge 
of the line of contact. 

Usina the formulas (2.3!, (2.4) 5) weobtain, fortha kernel k(E,z) of the integral Eq.(2.3), 

the representation (2.21) where Sk = (-l)k"l ii/S (G*;p)-l. Substituting this into (2.3) and using 
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(2.24) we obtain, after some reduction, the expressions 

Ana, (r)= 6 - yP, nR, =(6-~y)y;'K~ (gl)K,'(gl)-- 

2yh1';* 11 -t 2h$“R1 (g1)fG 6~1, 

R-22n 1 R*i&(++)] 

(2.5) 

In this case the unknown region of contact must be determined from the condition w,"(i) = 
-2~ /6, 7/ equivalent to the fact that there are no bending moments on the edge of the region 
of constact (M(l)=0 (see (1.12)) 

3. Let us give examples of the calculation of the mechanical characteristics of the 
problem in question for s = 0.3; ~9. = 1.5.10-?; n = 0.5p (p = const). 

-f 
A 

3.0 

2.8 

2.6 

Fig.3 Fig.4 

Fig.1 shows the dependence of '&e penetration of the stamp on the fcrce applied for P= 

-3 here and hezeeforzh the nurrber on the curve corresponds to the nuder of the problem:. 
The dependence of the contact regicz on the applied force is shoh'n in Fig.2 (p= -!> from 
which we see that in the case of +-he applied theories, which disregard the effect of transverse 

ccmpression, the values of i.-l are tee low. Fig.? shows the relation between the penetraticn 

of the stamp and the area cf the region of contact for p= 2. The distribution of contact 
pressures (of distributed load in the case of problem 5) is shown for p = O,Ri.-z= 2.4 in Fig.4. 
We note that theoreies 4 a".d j yield non-zero values for the contact pressures at the edge 

of the contact area, and in prcbles j concentrated forces will also appear. 

Thus the results obtained show +&at the best approximation to problem 1 over the set 
of characteristics examined here over the prescribed range of values of the parameter p is 

given by the solution cf prcbler. 5. 
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ON A METHOD OF SOLVING TWO-DIMENSIONAL INTEGRAL EQUATIONS 
OF AXISYMMETRIC CONTACT PROBLEMS FOR BODIES WITH COMPLEX RHEOLOGY* 

A.V. MANZHIROV 

A two-dimensional integral equatin appearing in axisymmetric contact 
problems for bodies with complex rheology is studied. A method of 
constructing the solution of this equation in proposed, based on inspecting 
the non-classical spectral properties of an integral operator. A contact 
problem for a non-uniformly aging viscoelastic foundation is solved as 
an example. 

1. Consider the integral equation 

c (f) (I - L,) q (r, t) + (I - L,) Fq (r. 1) = 6 (t) - g (4 ,(I.!) 

(I-L,;)!(t)=!(t) - ff(T)X.,(hT)dT (k = 1,2) FL. (7) = ic(p)k(n, r)r@, O<E<l 

c (1) > 0. 6 (f) c c II, 7-l: g(r) E L, (0): q(r, f)EL,(c?) ,: C[l, ?-I 

with the auxilliary condition 

P (t) = i q (r, t) r dr, P(t)sC[l,T] (1.2) 
c 

Here lik(f,r)are Volterrakernels /l/, the operator F is completely continuous, selfconjugate 
andpositive definiteandactsfrom L2(R) into L,(O),R isaregionbounded bycirclesof radii E 
and 1 (when E = 0 C! is a unit circle), and 

!. .! 
\\k2(p,r)vdrdr< 30 
;; 

(1.3) 

Wote that the kernel of the integral operator F admits of the representation /2/ 

k(r,p) = 5 i r,,P,* (r)P,,* (14 
n,=0 n=o (1.4) 

where P,,* (r) is a complete systemoffunctionsorthonormalired in L,(Q). We choose this function 
as follows (P, (3) is theLegendre polynomial): 

P,*(r)= 1/z P,('zil,2r* ) (m = 0, 1, 2, . .,) , i Pm* (r) r dr = ( [(lo, E2)‘21”z’ “, ; ; 
(1.5) 

Moreover, by virtue of (1.3) and Parseval's equation, we have 

2. Let us determine in (l.l), (1.2) q(r, i) and 6(i), assuming that the remaining 
functions are given. 

We introduce a space of functions belonging to L,(Q) and such that their integral over 
R is zero, and denote it by L,C(O). 
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