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ON USING THE MORE-ACCURATE EQUATIONS OF THIN COATINGS IN THE THEORY
OF AXISYMMETRIC CONTACT PROBLEMS FOR COMPOSITE FOUNDATIONS™

V.I. AVILKIN, V.M. ALEKSANDROV and E.V. ROVALENKO

More-accurate equations describing the axisymmetric deformations of
elastic, thin-walled elements (coatings) are derived using the asymptotic
analysis of the solution to the first fundamental prcblem of the theory

of elasticity for a layer. The notable difference distinguishing these
relations from the classical, Kirchhoff-Love and Reissner-Timeshenko
equations of flexure of plates, and their modifications /1/, is, that

there are no concentrated forces at the edges of the stamp when the
corresponding contact problems are solved, Moreover, the formulas obtained
contain the equations of classical theory as a special case. The solutions
cbtained using various applied theories are compared with the corresponding
solution obtained using the eguations of the theory of elasticity, using
the example of the axisymmetric contact problem of impressing a plane
circular stamp into a layer lying on a Fuss-Winkler foundation. The
characteristic parameters of the problem in gquestion are computed by
numerical methods.

1. as we know /2/, the scluticn of the eguations of the thecry of elasticity can be
expressed, in the case of axisymmetric problems, by a single biharmenic function 4 (r, z)

. _ @ L 62
A%y =0 {.\_?-p—;-g;-%? (.4
Wu=—L, Wu= {Z(zwx;.X—-bi;};g-:- 7 (1.2)
o=t 20— Z g =g (= dn ]y (1.3)

Let us consider the first boundary value problem on the equilibrium of an elastic layer
of thickness 2k, when the application of external loads deforms it symmetrically about the
z-axis. We shall seek the sclution of (1.1) in the form of a Hankel integral /3/

- ®
1= VIE L0 0= r(rale(rhar (1.4)
[d 0
Substituting (1.4' intc (1.1 and carrying out simple mathematical reduction, we cbtain
@ (5. z) = (cych 32— c,Ezsh ¥ 4+ dyshis — dyfzch &2) 178 (1.%)
where ¢; and d; (j = 1.2) are functions of § whose form is determined from the boundary conditions
of the problem in guestion O (r B) = o (r). T (r B) =1, (7 {1.6)
o (ry, — k) = o_{r), 1,{r. —h)=1_()
O Ty = 0. (1P + 20 >
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We assume that the functions o04(r) and 3 (r) in (1.6) satisfy the following conditions:
in any finite interval (0, R)oy (r), 14+ {r) are functions of bounded variation and oy (r), r*t,
(N L {0, co). Then we can write 04 {r}, 14 {r) is the form of Hankel integrals /3/

ox (=B @D () =[@® N0 wn
[} ]

Applying further the Hankel transform to (1.6) and taking into account (1.2)—(1.5), (1.7),
we obtain

w'=—gr (o + o+ dbyshis + (1.8)
I3
{dy 4+ dz + cofz) ch E2] Jo" (rE) BdE
w,"z——-z%S([d,——2(1-—~2v)da+c.§z]shtz+
0

fer—2(1 — v)ea + itz ch k) Jo" (rE) B2}
GE=D "I O—-I.®IGEH +IT, B+ T_(5)]5;E)
Cy(}) = — 2vch th — thsh Eh, Cy (F) = ch Eh
S, (8) = (1—2v) sh th — Ehch Eh, S, (F) = shth
d; (8) = D, {IZ, (8) + Z_(D)IS,* (B) +

[T, (8) — T_(&)] C;* (&)}
S,% (§) = —2v sh th — thch th, S,* (}) = sh th

* () ={(1—2v) chth — thshth, C,*(f) =chth
D, (8) =sh2th = 2t R
Simplifying the expansions (1.8) written in terms of Hankel transforms asymptotically,
up to terms of order O (%) (7. = ha™ — 0) and returning to the originals in accordance with the
fact that u ~ T, w ~ 0k in contact problems (see e.g. the degenerate solutions for a thin
layer /4/), we will write

46k L [rAus () = _,.‘E:gﬁ{{r(n_r“)r— (1.9)
-6—}1-[7*.31 (t,— )]143(1—v)(c — o )—vhi\ (o, + o)+
(2~ 3v) A2 (0. — o) T =X (3 r (v, + 1)) —
2B ray (v, + 1))
4Gkﬂo°wi(r)=3(1—v){c*-—c_——i_\o(d —o) L
Hh‘ RN __0} + 3(3-;\‘)32 [r(r, ~ 1) —
—-—-———<"“3"" =) =

lli-[m,(r — ) = (=) kA (0. L a )
g = d0drt =l ddr — i (i = 0, 1)

Note that Egs.(1.9) obtained cover radial, tensile and shear deformations, as well as
deformations of the transverse flexure and compression of an elastic plate (coating).

If in the course of deriving (1.9) we use the fact that the parameter i = ha™! is small
in order to average the displacements over the thickness, we arrive at the following simplified
equations of plate deformation:

Whduy=— (1=, — )= 5B w1~ (1.10
vhi{o, ~0a)
4 GRAC = (1 —v) (0. — o) — 2T E hing (o, —0.) +

3o hasi(o,— o)+ -‘»-‘:,L”{[ruﬁr,n — T+ )

Unlike (1.9), the above eguations account only for the radial, tensile and transverse
flexural deformations. Here and earlier A is a dimensionless parameter characterizing the
relative layer thickness and a is the radius of the segment of active loading of the layer,
i.e. of the segment where the surface loads o0, {r) and 13 (r) comprise, for example, at least
5% of their maximum values.

The expressions (1.9), (1.10) obtained represent more-accurate differential eqguations of
deformation of thin coatings. Neglecting on the right-hand side of the second expression of
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{1.10) (or (1.9)) terms of order ) and higher, we arrive at the Xirchhof-Love equation of
plate flexure /1/. 1If on the other hand we neglect in (1.10) the term of order O (M) only,
we obtain the Reissner-type equation of plate deformation /1l/. Finally, neglecting on the
left- and right-hand side of the second equation of (1.9) terms of order A*! and higher, and
on the right-hand side of the first equation terms of order A, {i.e. if we neglect the
flexural rigidity of the coating), we obtain

4Gh Ajuy = — (1 — W) (1, — 1) — vh (0, + o) (1.11)
o, —0_= — hritlr(z, + )l

Expressions (1.1l) represent the equations of axisymmetric deformation of the Melan cover
plate. We can also obtain from {(1.9), (1.10) the Fuss-Winkler and Pasternak-Vlasov equations
for the foupdations.

It should be stressed that when the contact problems are solved using Egs.{1.9), equations
of the theory of elastigityor Egs.{1.10), concentrated forces do not appear at the boundaries
separating the segments. 2As we know /5—8/ this drawback characterizes the differential
equations of flexure of elastic, thin~walled elements cbtained on the basis of the Kirchhoff~
Love or Reissner-Timoshenke hypotheses or their modifications.

We shall present a method of proving the fact using Egs.(1.9). Let us take a circular
plate of radius a and thickness 2h with a load-free face. We introduce an axial load, a
shearing force and a bending moment acting in the cross-section of the plate

h R h
T={od Qn="{r.d Mn=7_o:d: (1.12)
by —h wh

Using the conditions of equilibrium of the plate we can show that T () = @ {a) = M (a) = 0.
Therefore Egs. (1.9) can be transformed to

4G, == — VEALP < 3 (1 — v} Q T (2 — 3v) h2AQ + (1.13)
L e I LY N A
(1 —~ 8 {3ri(rsSy — 2R3 [ (r8)'T
46h° Burs) = —3(1 =)0 — Sr a0+ S a0 +
31— )3 (rS) — (2 —=3v) R} [ SY)
SR[r (rT ) ) = (L — v ROAP

T

P(ry=rt\p(o,—o_)dp, S(r)=r"?
[
Sclving the systen of four Egs.(1.13) we can confirm that the functions (1.12), (1.14}
will be continuous provided that the functions us(r) and wy (r) are piecewise continuous.
For example, eliminating ¢ and S fronm the eguations, we obtain

p(t,+ t.)dp (1.1%H

LTI

—a i T - TV =i
[ 3G 11—~ v .
f = e ey W= TGy {h.‘&g R N i Pl G }

~ " L 26 ,
MNP o= gy 7T T e e

which shows that 7,P will be continuous provided that u, w, are piecewise continuous
functions,

Therefore, when r = ¢, there will be nc concentrated forces, It is alsc important to
note that if the functions uy(r} and wy (r) have first-crder discontinuities, then so will
the stresses 04 (r}) and 714(r) and vice verssa, and the discontinuities will be connected with
each other by the relztions

46us =Lt — ) (1, — 1) 220 (1 =) (r, + T)

46us =1 (1 —~) (o, — o) =R (1—¥) (0, +0.)

Egs. {1.10) have the same properties.

2. e will illustrate the use of the above eguations by considering an axisymmetric
problem of frictionless imbedding of a parabolic stamp, under a force P, intc an elastic (G, v)
layer of thickness 2h, lyinc on a Fuss-Winkler foundation, with a coating coefficient 1. We
shall describe the physico-mechanical properties of the layer using the equations: 1) of the
theory of elasticity; 2) (1.9); 3} (1.10}); 4) of Reissner-type plates

4GH3A 2w, = 3 (1 — v) (0, — 0) — (3—2v) K24, (0, — O.) @.1)
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and 5) of Kirchhoff-Love plates
4Gh3Aw, = 3 (1 — %) (6, — ©.) (2.2)
The problems under consideration can be reduced, using the method of integral transforms
/4/, to finding the unknown contract pressures under the stamp, from the following integral
equations of the first kind, written in dimensionless form as follows:

1

\op)ok(5 L )do=A—v) (O<r<1) (2:3)
¢
k(L 2)= § K@ulo@i)Jow)du (t=4, 2= +)

) Kuy= [+h4u f{-l-1 2: -; ;:'(c';:“‘(:lf‘; ig:}*)} [ 2.4

3(1+n) 4+ n)ut+ (%) (Mt n)ut

9 K= TF @AW
. __ n[3 4 mut4 (1) mut]
3) K(u)-g-{- mu'-y’-‘i{n-{-(:/so) m] ut

n {3 4 mu?} 3n

4 K@ =gz Y KW=
h=hatn =GRl (1 — ), m = (3=2v) (1 — )

which must be supplemented with the condition of statics

1

P —v)(Ga??=R=2n{a(r)rar (2.5)
o

Further, using the approach described in /4/, we transform the Eq.{2.3), (2.4}, in the
case of problem 1) to the egquivalent integral eguation of the first kind with a difference

kernel

:
Vemk(Zt)ar=mg) (t1<) (2.6)
-1

k(z)=\ Lucosuzdu, K (u)=u"L()

t
_d r{d— _ e -
1
_ G (1Y dt
olr)=—2 3 [r;(wﬂ_rz] (2.8)

We obtain the solution of (2.6} in accordance with the Krein formula /9/

b
¢ ()= g7 |57 5 9(s,0)g(s)ds | o (t, 1) — (2.9)

Sgﬁ,s)k{\";‘}dx=nx O<s< ) (2.10)

M=o par
]

To find the unknown function ¢ (l. s} from the integral Eq.(2.10), we approximate L {(u)
in the expression for its kernel (2.6}, according to the first formula of (2.4), by the

expression

() = “““"’Lg"j_;“*”] L (e—0, d=14n) (211

The constant B is obtained in such a manner that the percentage divergence of the approxi-
mation (2.11) from the function L (u) = uK (u) (2.4) is the smallest for all 0 u<<co.
We shall seek the principal (zero) term of the asymptotic form of g (i,s) for A<Z1 in the
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form /4/

gt ) =p (x)m( el )m( "{' )v"({") (2.12)

where o (f} and v () satisfy the Egs.(1.25), (1.26) of /10/, with the corresponding functions
within the inner integrals replaced by the expression (2.11). Substituting the solutions o (1)
and v {(t) obtained in this manner into (2.12) and passing to the limit as & — 0, we write

L =nv(SE ) (<) (2.13)
(t)=exp(— A [10( ABt 27t + By + Bl (—"g—"-}}

Here JI,(l) are modified Bessel functions. The corrective multiplier p (R} is obtained
form the first relation of (2.10) at t==0 and s =1 after substituting (2.13) into it. We
note that expression (2.11) approximates the corresponding function L (u) at r<C4 with an
error not exceeding 20%. The error of the solution obtained on this basis does not exceed
the error of the approximation and is reduced by introducing the corrective multiplier u (&)

/4/.
The unknown radius of the region of contact between the stamp and the layer, is found from
the condition o (1) =0 which can be written, according to (2.7)—(2.9), in the form

8, (1) — M, (1) = 0 (2.14)
1 x
My (@) =+ ( (s, z)ds = ap (A) {W - 2.15)
24B—1 = |, T(1—ABp AB?: 3
5w T TIEE [i —exP& ,}]}

I " N 2AB —1 23
My (z)= S g(s,r)s?ds=/.3p(-}.){2‘:}\‘ + __’_‘W% ;

4B B U aET) R
1 i 4 3y =
(Tt Tt
I 3 R ) 2481217
FE T T AR T 4,42131}[i_"e"p(“ ) )] -
/ 24Biz 1 1 2 3
Pl — — | T ("' -+ 55— et
R, 1 RS
AB? \“‘T+ AB T 24B: /’72—“
Finally, substituting (2.8 , (2.2}, (2,13} inte the condition of equilibrium (2.5, we
obtain
R=4 [6M, (1) — 3, (1)
Let us now consider problems 2) and 3). Since in these cases the kernel A (u) (2.4) of

the integral Eg.(2.3) represents a rational function, the eguation can be sclvedin clesed form.
Indeed, let us write the kernel (2.3} in the form /4/

. e e Loty Koz} (p<<7) 910
B2 = chb* (1) - y&{ o) (2.15)
Z P Koy Tolzvs) (03>7)
Sp==C B o ) (]=1,2,k¢]}

(= vty
= (44 — 54) (54 — 1), A =1 =~ n (problem 2})
e =md (204 + m)?', A =n (problem 3))
Here +, = ~ ib. z; = —ily. & and [ denote, respectively, the poles and zeros of the
functions K (¥) (2.4) 2), 3), lying in the uper half-plane. The function 8% ({, 2) in (2.16)
correspends to the singular part of the kernel and is equal to

i

o
8% (5, 2) = § uJu t) Jo (uz)du
0
It has the basic property of the delta function

8* (L 2)z¢ (r)dz=0(5) (O<I<a)

ey 0y

We shall seek the solution of (2,3) in the form
o (r) = Alim [80 (g, r) + 2y8%0 (e, r)/0e?] (e —0) 2.17)
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where 0 (e, 7) is a solution of (2.3) with a perturbed right-hand side, Jo(er),  which can be
written in the form /4/

G(E,?}=Xofo(£f)+ix,lo (-fi-‘r—) (2.18)
Jei

Substituting into the integral Eg. (2.3) with right-hand side J,(er) the functions k(g, 2)
and o(e, r) (2.16), (2.18) and equating in the resulting relation the coefficients of J, (er)
and I4{z;r/A) on the left and right sides, we obtain the following system of linear algebraic
equations for X;:

eyX; +agX, = b X, (=1, 2), X, =274 (2.19)
axs= e (Ko €)1 () + 1K (8) To )]

b= sy [k (88) Ja (6) — heKo (g0) 1 (0]

z

&x =—2:- » Pr== -f"
Solving system (2.19) and using the formulas (2.17), (2.18), we can write
Ao (r) =6 —yr + "zr <{ Y Ky (g) — (2.20)
2 [Ko (g1 + = K1 (Ex)]} [ﬂu’o (Px’) — axlo (par)] +

{ =Y Ky (g9) — 5 [Ko(g) + - Ka () |} [anslo (i) —
anls(pir)) > y D = G314z — G13ln

We find the unknown radius of the area of contact between the stamp and plate from the
condition w,@ (1) = 0, which is equivalent to 0(1) =0, and find the force acting on the stamp
from (2.5), by substituting into it the values of the stresses (2.20).

We shall use Reissner~-type equations for the plates (2.1) to describe the physico-mechanical
properties of a thin layer. Then formulas (2.3}, (2.4); 4) give

Iﬂ(;Yk)Ko(z?k) el
k)=
2= ;""3 | KeGroTolen) (03>7) @21)
=1 _........___uj‘_‘_';’* (k=12 k) (2.22)

Using the relations (2.21), {2.22) we find, as before, from the integral Eg.{2.3) and the
condition of statics (2.5).

Ano (r)==8 — yr2 4 —%; To(py 1) {'P"El‘ Ky (g2) — (2.23)
2 [Hotey + 2= Ky (EZ):I}

5 &y
-%'nf—R-———z-— - + Py 1(P1){“‘;‘TLK1(32)—

-2—;?:- I:Ko (&) + '1-;" K, (ga}]}

To find, in this case, the unknown regicn of contact, we must use the relation u,” (1) =0
which is equivalent to the fact that there are no concentrated forces when r=1(Q¢ (1) =0 (see
(1.12)). From (2.3), (2.23) we obtain

1 (5— 2y . 2
Z(-‘ 1y — { = YK, )=+ [Ko(gj) +5r & (E;)B=0
- t) i H
Finally we consider the solution of the problem in guestion for the case when the mechanical
properties of the layer are modelled by the Kirchhoff-Love equations of plate flexure (2.2).
As was shown in /6/, the contact stresses will, in this case, have the following structure:

ofry=o,{r)+ Rb(r— 1) {2.24)

i.e. they are composed of the distributed load and concentrated forces acting along the edge
of the line of contact.
Using the formulas (2.3), (2.4)5) we obtain, for the kernel k({,z) of the integral Eq.(2.3),

the representation (2.21) where s = (—1) i]f’fﬁ? (44;)7Y. Substituting this into (2.3) and using
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(2.24) we obtain, after some reduction, the expressions

Ao, (N=8—vr%, nRy=(6-—%)7"K1(g) K5 (g1) — {2.25)
29h3T [+ 207K () K3 ()],
— A b
R=2n Rt 37 (37— 1))
In this case the unknown region of contact must be determined from the condition w,” (1) =

—2y /6, 7/ equivalent to the fact that there are no bending moments on the edge of the region
of constact (M (1) =0 (see (1.12))

6= [5 Ka o) 3 €)= 5 Ko K e)] -

o [ — o o K1<g1>1< (&) =2 K () K3 (8) =0

3. et us give examples cof the calculation of the mechanical characteristics of the
problem in gquestion for « = 0.3; 2 = 4.5-10°% »n = 0.57 (p = const).
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i7.) chowe the demendence of +he nenetration of he stame on the force armlied for n =
Fig.l shows the dependence of the penetration of the stamp on the force applied for p
—3 (here and henceforth the number on the curve corresponds to the number of the problem).
The dependence of the contact regicrn on the applied force is shown in Fig.2 (= -4 from
ek AR s eme =t Sy Rl rana AF e amediad thoaAarime whi~h A3 Braes tha afFfamtd ~F "vav\l-vvr\vﬂn
which we see that in the case of the applied theories, which disregard the effect of transverse
compression, the values of 47! are tecc low. Fig.23 shows the relation between the penetraticn
of the stamp and the area of the region of contact for p 2. The distribution of contact
pressures (of distributed lcad in the case of problem %) is shown for p=20,Ri*=24 in Fig.4.
We note that theoreies 4 and 5 yield non-zero values for the contact pressures at the edge

of the contact area, and in problem 5 concentrated forces will also appear.
Thus the results cbtained show that the best approximation to problem 1 over the set
of characteristics examined here over the prescribed range of values of the parameter p is

given by the sclutiorn cof preblem 2.
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ON A METHOD OF SOLVING TWO-DIMENSIONAL INTEGRAL EQUATIONS
OF AXISYMMETRIC CONTACT PROBLEMS FOR BODIES WITH COMPLEX RHEOLOGY"

A.V. MANZHIROV

A two-dimensional integral equatin appearing in axisymmetric contact
problems for bodies with complex rheology is studied. A method of
constructing the solution of this equation in proposed, based on inspecting
the non-classical spectral properties of an integral operator. A contact
problem for a non-uniformly aging viscoelastic foundation is solved as

an example.

1. cConsider the integral equation

cWA—L)g(n )+ (I —Ly) Fg(r. ) =8(t) — g(r) (1.1)
1 1
A—Lyi=1) — (MK tnde (k=12  For)={c@kenpd, 0<e<t
1 £

e >0, 8 =Cl1, T g(r)= L, () g(r, N = L, (Q) » CU, T)

with the auxilliary condition

1

Pwy=Sgr.tyrar, P@y=cCiL, 1) (1.2
€
Here K, (1, 1) are Volterra kernels /1/, the operator F is completely continuous, selfconjugate

and positive definite and acts from L, (Q) into L, (Q),Q is a regionbounded by circles of radii ¢
and 1 (when ¢ = 0 Q is a unit circle), and

11
M k2 (o, r)rpdrdp < oo (1.3)
£EE
Note that the kernel of the integral operator F admits of the representation /2/
krip)= 3 3 rmPm® (1) Pu* () (1.4)

where P,* (r) is a complete system of functions orthonormalized in L, (Q). We choose this function
as follows (P, (z) is the Legendre polynomial):

am <~ 2 22— 2r : 1 —¢2)/2), =
pmt(,.)=-l/41m__ 2 Pm<t il!aZf) (m=0,1,2,..), SP,,,‘(r)rdr:{[( €2)/2] m=20

e? 0, m*o (15)
Moreover, by virtue of (1.3) and Parseval's equation, we have
Fin < 00 (1.6)
m=Q n=0

2. Let us determine in (1.1), (1.2) g¢(r,t) and & (¢), assuming that the remaining
functions are given.

We introduce a space of functions belonging to L, (Q) and such that their integral over
Q is zero, and denote it by L,° (Q).
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